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Abstract 

Background: As regulators of multifunctional metalloproteinases including MMP, ADAM and ADAMTS families, tissue 
inhibitors of metalloproteinases (TIMPs) play a pivotal role in extracellular matrix remodeling, which is involved in a 
wide variety of physiological processes. Since abnormal metalloproteinase activities are related to numerous dis-
eases such as arthritis, cancer, atherosclerosis, and neurological disorders, TIMPs and their engineered mutants hold 
therapeutic potential and thus have been extensively studied. Traditional productions of functional TIMPs and their 
N-terminal inhibitory domains (N-TIMPs) rely on costly and time-consuming insect and mammalian cell systems, or 
tedious and inefficient refolding from denatured inclusion bodies. The later process is also associated with heteroge-
neous products and batch-to-batch variation.

Results: In this study, we developed a simple approach to directly produce high yields of active TIMPs in the periplas-
mic space of Escherichia coli without refolding. Facilitated by disulfide isomerase (DsbC) co-expression in protease-
deficient strain BL21 (DE3), N-TIMP-1/-2 and TIMP-2 which contain multiple disulfide bonds were produced without 
unwanted truncations. 0.2–1.4 mg purified monomeric TIMPs were typically yielded per liter of culture media. Peri-
plasmically produced TIMPs exhibited expected inhibition potencies towards MMP-1/2/7/14, and were functional in 
competitive ELISA to elucidate the binding epitopes of MMP specific antibodies. In addition, prepared N-TIMPs were 
fully active in a cellular context, i.e. regulating cancer cell morphology and migration in 2D and 3D bioassays.

Conclusion: Periplasmic expression in E. coli is an excellent strategy to recombinantly produce active TIMPs and 
N-TIMPs.

Keywords: Tissue inhibitor of metalloproteinase, Matrix metalloproteinase, Periplasmic expression, Disulfide 
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Background
Remodeling of the extracellular matrix (ECM) is a criti-
cal event in numerous physiological processes (e.g. 
growth, wound repair, and embryogenesis) [1], and 
pathological procedures such as arthritis, fibrosis, tumor 
metastasis, and neurological disorders [2, 3]. Changes 
in ECM composition are mediated by families of multi-
domain extracellular proteinases including MMPs 
(matrix metalloproteinases), ADAMs (a disintegrin and 

metalloproteinases), and ADAMTS (a disintegrin and 
metalloproteinase with thrombospondin motifs). The 
enzymatic activity and zymogen activation of these met-
alloproteinases are governed by a group of endogenous 
proteins named tissue inhibitors of metalloproteinases 
(TIMPs) [4]. Four human TIMPs have been identified 
(TIMP-1 to -4, sharing 40% sequence identity), among 
which TIMP-1/-3 are glycoproteins, whereas TIMP-2/-4 
are not glycosylated [5]. All mammalian TIMPs have 
12 conserved cysteine residues forming six disulfide 
bonds that are essential for their functions and struc-
tural integrity [1]. N-terminal domains of TIMPs (~125 
aa, N-TIMPs) and their C-terminal domains (~65 aa, 
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C-TIMPs) have three disulfide bonds each. N-TIMPs 
alone fold to stable and native structures carrying full 
inhibition activities to MMPs and other disintegrin-met-
alloproteinases [6–8]. C-TIMPs are more divergent, and 
able to improve inhibition selectivities and binding effi-
ciencies [9]. Investigations with isolated MMP domains 
and their crystal structures have indicated that N-TIMPs 
interact directly with the catalytic domain of MMPs to 
form a stable inactive complex [10].

TIMPs inhibit MMPs with various inhibition constants 
(KIs) ranging from low to subnanomolar, implicating 
that they have distinct functions in vivo [1]. In addition 
to MMPs, several members of the ADAM and ADAMTS 
families are regulated by TIMPs as well. Among TIMPs, 
TIMP-3 exhibits the broadest inhibition spectrum. To 
improve their inhibition potency and selectivity among 
individual MMPs, N-TIMPs have been engineered by 
directed evolution using phage display [11] and TIMP 
chimeras have been designed to expand specificity [12]. 
As a consequence of their metalloproteinase inhibition 
activity, TIMPs exhibit biological functions such as pro-
moting cell proliferation, inhibiting angiogenesis, inhibit-
ing transendothelial migration and regulating migration 
[13–18]. Because of these important physiological pro-
cesses TIMPs regulate in vivo and in vitro, TIMPs have 
been the focus of many biochemistry and cell biology 
researches, and thus steady supplies of active human 
TIMPs at milligram scales are vital.

Mammalian and insect cells have been employed for 
producing properly folded recombinant TIMPs [6, 7, 9, 
19–21]. With merits of high yield and low cost, bacterial 
expression systems have also been attempted [21–23]. 
However, overexpression of (N-)TIMPs in Escherichia 
coli, even when fused with highly soluble MBP (maltose-
binding protein), led to improper or incomplete fold-
ing or the formation of insoluble inclusion bodies. To 
obtain their native conformation, the insoluble TIMPs 

require refolding via manifold denaturation–renatura-
tion steps, i.e. urea solubilization and gradient dialysis. 
This labor-substantial and time-consuming preparation 
of TIMPs (usually 3–5 days) significantly impedes studies 
of TIMPs, especially when TIMP variants are needed [24, 
25]. Although successful refolding of TIMPs has been 
reported in literature [8, 21, 22, 24–29], due to the vari-
ous chemical–physical properties and characteristics of 
TIMPs, the optimal procedures must be tailored for each 
TIMP. In addition to deficient yields, other inevitable 
limitations often include poor reproducibility, heteroge-
neous oligomeric products, and difficulty of scale-up [22, 
26].

Encouraged by functional productions of a variety 
of recombinant human proteins containing multiple 
disulfide bonds, i.e. T cell receptors, antibodies and tPA 
(tissue plasminogen activator) [30–32], in the oxida-
tive periplasm of E. coli, we hypothesize that periplas-
mic expression will result in soluble and active TIMPs. 
In addition to providing an oxidative environment that 
promotes the formation of disulfide bonds of (N-)TIMPs, 
periplasmic expression can enhance the correct protein 
folding due to multiple molecule chaperons (e.g. SurA, 
PpiA, Ppid, FkpA, and Skp) [33] and a slow process-
ing rate controlled by secretion machineries [34]. Our 
previous study directly expressed functional MMP-14 
catalytic domain (cdMMP-14) in periplasmic space of 
E. coli [31], and we aim to apply a similar approach for 
active TIMP production. In this study, by optimizing co-
expression of a set of disulfide bond enzymes (Dsb pro-
teins) and selecting a proper expression host, soluble and 
monomeric (N-)TIMPs were produced in periplasm with 
high yields (Fig. 1). Periplasmically produced (N-)TIMPs 
exhibited their biological activities in MMP inhibition 
assays and cell migration tests. We expect the novel 
method described here—direct production of functional 
(N-)TIMPs in E. coli without refolding—could greatly 

Fig. 1 Direct production of soluble (N-)TIMPs in E. coli periplasm and their biochemical and cellular function characterizations. Unfolded TIMPs with 
free cysteines were expressed in cytoplasm and secreted to periplasmic space, where periplasmic chaperones, especially DsbC (a disulfide isomer-
ase), resolved incorrect disulfide bonds, resulting in properly folded TIMPs. Following enzymatic and osmotic treatments, high yields of soluble (N-)
TIMPs were purified from periplasmic preparation. The purified (N-)TIMPs were subjected to function tests both biochemically and in the cellular 
context. GPC gel permeation chromatography
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expedite many facets of in vitro and in vivo studies asso-
ciated with metalloproteinases and ECM remodeling.

Results
Production of soluble TIMPs in E. coli periplasm with high 
yields
Full-length TIMP-1/-2/-3/-4 and N-terminal domains 
of TIMP-1/-2/-3 were constructed at the downstream 
of a Plac promoter and a pelB leader peptide sequence. 
Crystallography of MMP-TIMP complexes suggested 
that N-terminal residues CXCX of TIMPs directly inter-
act with MMP reaction cleft [35], and TIMP-2 vari-
ant with an alanine appended to the amino terminus 
(Ala+TIMP-2) was inactive [28]. Therefore, a hexa-
histidine tag was genetically tagged to the C-termini of 

(N-)TIMPs for detection and affinity purification. TIMP 
constructs were transformed to E. coli Jude-I for expres-
sion. Initial tests indicated that no induction resulted in 
a higher soluble expression than induction with 1  µM 
IPTG, a similar phenomenon observed for cdMMP-14 
expression [31]. After purification, reducing SDS-PAGE 
(Fig. 2a) showed single and strong bands of N-TIMP-1/2 
(15  kDa) and TIMP-2 (23  kDa), consistent with their 
calculated MWs. Particularly, 0.5 and 1.4 mg of purified 
N-TIMP-1/-2 were yielded per liter of culture media. 
However, TIMP-1/-4 were expressed at much lower lev-
els. Purified TIMP-1 sample showed two bands, one for 
mature TIMP-1 (22 kDa), and the other band likely asso-
ciated with unprocessed TIMP-1 having the pelB leader 
signal peptide (27 kDa). In the case of TIMP-4, unwanted 

Fig. 2 Periplasmic production of (N-)TIMPs and expression condition optimization. a Reducing SDS-PAGE of purified (N-)TIMPs stained with 
Coomassie blue. Red arrows indicate the target bands. b Effect of periplasmic folding modulators (DsbA and/or DsbC) on expression efficiencies of 
(N-)TIMPs analyzed by Western blotting using anti-6×His antibody. 1P indicates DsbA and DsbC were under one PBAD promoter and 2P represents 
DsbA and DsbC were under two separated PBAD promoters. Red arrows indicate the target bands. c Effect of BL21(DE3) on reducing unwanted trun-
cations analyzed by Western blotting. Same amounts of cells were used in b and c
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truncation was detected at 17 kDa, in addition to the full-
length TIMP-4 at 23  kDa, and bands corresponding to 
N-TIMP-3 and TIMP-3 were not present in their purified 
samples (Fig. 2a).

Previous studies have demonstrated that periplasmic 
folding modulators can improve the soluble expression 
and homogeneity of proteins containing disulfide bonds 
[32, 36–38]. To increase expression levels of soluble 
TIMP-1/-3/-4 and N-TIMP-3, we chose DsbA and DsbC 
as folding modulators to catalyze the formation and 
isomerization of disulfide bridges, respectively [33]. To 
investigate the optimal effect of DsbA and/or DsbC, Jude-
I cells carrying the TIMP genes were co-transformed 
with one of four chaperone plasmids: pBAD-DsbA, 
pBAD-DsbC, pBAD-AC1P (both DsbA and DsbC under 
one PBAD promoter), and pBAD-AC2P (both DsbA and 
DsbC under two separate PBAD promoters). After cul-
tured in 2×YT media overnight at 30  °C without IPTG, 
crude periplasmic fractions were prepared for analysis 
by Western blotting using anti-6×His-HRP. As results 
shown in Fig. 2b, DsbC (either alone or with DsbA in the 
2P format) dramatically raised the yields of TIMP-1/-3 
and N-TIMP-3, while DsbA alone did not exhibit signifi-
cant improvements of TIMP expression. The result that 
DsbC (disulfide bonds isomerase) was far more efficient 
than DsbA (a thiol disulfide oxidoreductase) for TIMPs 
production suggests that presumably resolving the non-
native disulfide bonds was the key for proper folding of 
TIMPs. The suboptimal result of co-expression of both 
DsbA/C in 1P format was probably due to the inadequate 
expression level of DsbC that was at downstream of the 
polycistronic construct. In addition, DsbC alone also 
significantly enhanced TIMP-4 production at a similar 
degree as TIMP-1/-3 (Fig. 2b).

Although the amounts of expression were significantly 
improved by DsbC, unacceptable levels of truncated 

species were still present in (N-)TIMPs samples (Fig. 2b). 
We hypothesized that these truncations were digestion 
products by E. coli endogenous proteases, and thus using 
protease-deficient strain, e.g. BL21 (DE3) could solve the 
problem. Western blotting analysis confirmed that when 
BL21 (DE3) was used with DsbC co-expression, trun-
cations were dramatically reduced and only single and 
strong bands of TIMP-1/-3/-4 were shown (Fig. 2c). With 
facilitation of DsbC, soluble TIMP-1/-2 were produced in 
periplasmic fractions of BL21 (DE3) with yields of 0.2 mg 
purified proteins per liter of 2×YT media.

The quality of purified TIMPs was characterized by gel 
permeation chromatography (GPC). N-TIMP-2 sample 
displayed a single peak at ~15  kDa associated with its 
monomer. No aggregates or oligomers were detected, 
suggesting high quality of the preparation (Fig. 3a). GPC 
analysis of prepared N-TIMP-1 showed a major peak 
(~15 kDa) corresponding to its monomer, with presence 
of trace amounts of oligomers (Fig.  3b). However, com-
pared with N-TIMP-1 sample prepared without DsbC 
co-expression (Additional file  1: Figure S1), the degree 
of oligomerization was dramatically reduced, suggesting 
formation accurate disulfide bonds is critical for TIMPs 
production.

Produced TIMPs exhibited expected inhibition potencies 
towards a panel of MMPs
Because inhibitions of TIMPs to metalloproteinases 
are not highly specific, four MMPs were chosen to test 
the functions of purified (N-)TIMP-1/-2: MMP-1 (col-
lagenase 1), MMP-2 (gelatinase A), MMP-7 (matrily-
sin), and cdMMP-14 (membrane type 1-MMP). Using 
quenched fluorescent peptide substrates, MMPs’ enzy-
matic activities were measured in the presence of 
0.98  nM–1  µM purified TIMPs. As results shown in 
Fig.  4, TIMP-2 and N-TIMP-1/-2 efficiently inhibited 

Fig. 3 Size exclusion chromatography of purified a N-TIMP-2 and b N-TIMP-1. The size-exclusion column was equilibrated with 50 mM HEPES (pH 
7.5) and 150 mM NaCl. 100 µL of 500 µg/mL N-TIMP-1/-2 was loaded to a superdex™ 75 10/300 GL column (10 mm × 300 mm) at a flow rate of 
0.5 mL/min. Chromatograms were obtained by monitoring absorbance at 280 nm. The molecular mass of N-TIMP-1/-2 was estimated by its reten-
tion time and comparison with these of standard molecular mass markers, e.g. ovalbumin (43 kDa) and lysozyme (14.3 kDa)
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MMP-1/-2/-7 cleaving the peptide substrates in a dose-
dependent manner with  IC50 values ranging from 3 to 
72 nM. However, N-TIMP-1 was a relatively weak inhibi-
tor to cdMMP-14, an observation consistent with litera-
ture [5, 27].

Inhibition constants (KIs) were further calculated for 
direct comparison with the TIMPs produced through 
traditional approaches (i.e. mammalian cells or refold-
ing from inclusion body). Results (Table  1) indicated 
that, except N-TIMP-1 as a weak inhibitor to cdMMP-
14, all measured KIs were in nanomolar to subnanomo-
lar scale as expected. Particularly, N-TIMP-1 inhibited 
MMP-1/-2/-7 with KIs of 7.21 ± 0.33, 10.98 ± 3.76, and 

4.62 ± 0.44 nM, respectively. N-TIMP-1 behaves with a 
similar potency to MMP-7 as reported [27], but its KIs 
to MMP-1/-2 were 2–27-folds less potent than literature 
values depending on the studies [21, 24, 27], suggesting 
the possibility that only portion of prepared N-TIMP-1 
was active. However, for periplasmically produced 
N-TIMP-2, its calculated KIs (0.65 ±  0.14, 0.80 ±  0.03, 
2.86  ±  0.94, and 3.96  ±  0.53  nM for MMP-1/-2/-7/-
14cd, respectively) well matched with literature data [25, 
27], indicating high quality of N-TIMP-2 preparation. 
The inhibition potencies of TIMP-2 were measured as 
2.51 ± 0.01, 0.39 ± 0.09, 2.74 ± 0.09, and 0.34 ± 0.04 nM 
for MMP-1/-2/-7/-14cd, respectively. Among tested 

Fig. 4 Inhibitory activities of (N-)TIMPs toward MMPs. Semi-quantitative  IC50s of N-TIMP-1 were determined as 46, 65, and 57 nM for MMP-1/2/7 
respectively;  IC50s of N-TIMP-2 were 3, 6, 38, and 72 nM for MMP-1/2/7 and cdMMP-14 respectively; and  IC50s of TIMP-2 were 11, 2, 22, and 22 nM for 
MMP-1/2/7 and cdMMP-14 respectively. Error bars represent standard deviations from two independent measurements

Table 1 Inhibition constants (KIs) of periplasmically produced N-TIMP-1/2 and TIMP-2

All KI values are exhibited with ±SE

TIMPs KI (nM) measured in this study/reported in literatures [21, 24, 25, 27, 28]

Yield (mg/L) MMP-1 MMP-2 MMP-7 CdMMP-14

N-TIMP-1 0.5 7.21 ± 0.33/0.4–3 10.98 ± 3.76/0.4–1.11 4.62 ± 0.44/3.6 ± 0.9 Not inhibitory/146

N-TIMP-2 1.4 0.65 ± 0.14/0.4 ± 0.1 0.80 ± 0.03/0.04–0.3 2.86 ± 0.94/2–32 3.96 ± 0.53/0.8–3

TIMP-2 0.2 2.51 ± 0.01/NA 0.39 ± 0.09/0.6 ± 0.3 2.74 ± 0.09/NA 0.34 ± 0.04/NA
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MMPs, only MMP-2 has TIMP-2 inhibition data avail-
able in literature, i.e. KI  =  0.6  ±  0.3  nM [28], which 
well agreed with our results (Table 1). Collectively, both 
N-TIMP-2 and TIMP-2 exhibited expected KIs, suggest-
ing their correct folding in periplasm. Interestingly, com-
pared with N-TIMP-2, TIMP-2 displayed a significantly 
higher potency to cdMMP-14, implying that the C-ter-
minal domain of TIMP-2 may contribute recognition of 
MMPs as well [39].

N-TIMP-2 was functional in antibody epitope 
characterization
With structural and inhibition mechanism informa-
tion available for MMP–TIMP complexes [10, 35, 39], 
TIMPs have been employed to provide insights on 
epitopes and affinities of monoclonal antibodies that 
bind to (and inhibit) MMPs [40]. To investigate whether 
periplasmically produced TIMPs are capable in such 
functional assays, competitive ELISAs were conducted 
in which fixed concentration of Fabs of interest was 
mixed with increased amounts of TIMP and incubated 
in wells coated with the associated MMP, and captured 
Fabs were detected by anti-Fab-HRP for signal devel-
opment. In our previous studies, a panel of Fabs inhib-
iting MMP-14 has been isolated from phage display 
antibody libraries [41]. Three Fabs—3A2 (inhibitory, 
KI = 9.4 ± 1.4 nM), 3D9 (inhibitory, KI = 27 ± 3.5 nM), 
and 3E9 (non-inhibitory)—were therefore used to test 
N-TIMP-2 functionality in this study. Results indicated 
that N-TIMP-2 directly competed with Fabs 3A2 and 
3D9 on binding to cdMMP-14 with sigmoidal dose–
response curves (Fig.  5). As N-TIMP-2 concentration 

increased, lower amounts of Fabs 3A2 or 3D9 bound to 
cdMMP-14. Between these two Fabs, 3A2 responded at 
a higher N-TIMP-2 concentration, consistent with our 
measurements that 3A2 is more potent than 3D9 [41]. 
In contrast, binding of Fab 3E9 to cdMMP-14 did not 
significantly respond to N-TIMP-2 concentration. These 
results agreed with our previous observations that Fabs 
3A2 and 3D9 bound to MMP-14 reaction cleft vicinity 
therefore directly competed with N-TIMP-2, while Fab 
3E9 was non-inhibitory antibody likely having an epitope 
not overlapped with the binding site of N-TIMP-2 [41]. 
Overall, periplasmically produced N-TIMP-2 was suc-
cessfully used for antibody characterizations by com-
petitive ELISA, an effective method to identify and study 
antibody inhibitors.

N-TIMP-1/-2 decreased directionality, and N-TIMP-2 altered 
migration speed of tumor cells
To test the role of TIMPs in regulating migration, we 
treated human breast adenocarcinoma MDA-MB-231 
cells with 50 nM N-TIMP-1 or -2 and assessed directed 
cell migration in response to aligned collagen fibers (con-
tact guidance) in 2D and 3D environments. This final 
concentration was chosen so that MMPs like MMP-2 
would be inhibited with either N-TIMP-1 or -2, whereas 
MMPs like MMP-14 would primarily be inhibited with 
N-TIMP-2. The cells on 2D contact guidance cues were 
grouped in four different morphological shapes as shown 
in Fig.  6A–D. These categories included cells that were 
spindle shaped (I), branched (Y), bent (Γ) or spread (O). 
Most cells are identified as spindle shaped, however 
the addition of N-TIMP-1 or -2 decreased the fraction 
that were spindle shaped and increased branched, bent 
and spread, although not significantly. Furthermore, 
N-TIMP-2 was more effective in forcing this change. 
The cells suspended in 3D contact guidance cues were 
grouped in two morphological shapes: spindle shaped (I) 
or round (O) (Fig. 6E, F). The addition of the N-TIMP-1 
or -2 did not have a statistically significant effect on the 
overall fractions in each category.

While N-TIMP-1 and -2 only marginally affected 
the cell morphology shape in 2D and 3D contact guid-
ance systems, they significantly affect other attributes. 
N-TIMP-2 increased the aspect ratio, cell length divided 
by cell width, during 2D contact guidance, whereas 
N-TIMP-1 decreases the aspect ratio during 3D contact 
guidance (Fig. 6H). Cell migration speed responded simi-
larly. While N-TIMP-2 increased speed on 2D contact 
guidance cues, it decreased speed on 3D contact guid-
ance cues (Fig.  6I). On the other hand, cell directional-
ity changed in the same direction across the 2D and 3D 
systems. N-TIMP-2 decreases directional fidelity in both 
2D and 3D contact guidance environments with the 

Fig. 5 Competitive ELISA between N-TIMP-2 and Fabs for cdMMP-
14. Fixed concentrations of Fabs (10 nM for 3A2 and 3D9, and 20 nM 
for 3E9) were incubated with increasing concentration of N-TIMP-2 
on ELISA plates coated with cdMMP-14. The captured Fabs were 
detected by anti-Fab-HRP for signal development
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most robust response seen during 3D contact guidance 
(Fig. 6J). N-TIMP-1, on the other hand, had no effect on 
directional fidelity in 2D, but decreased directional fidel-
ity in 3D contact guidance system, albeit to a lesser extent 
than N-TIMP-2.

Discussion
TIMPs expressed in connective tissues play pivotal roles 
in extracellular matrix metabolism by inhibiting MMP 
activities in  vivo [2, 3]. Indeed, tumor cell invasion and 
metastasis can be impeded by up-regulation of TIMPs 

Fig. 6 Analysis of N-TIMPs on MDA-MB-231 cell behavior in 2D and 3D contact guidance environments. Cells on 2D substrates (A–D) or in 3D envi-
ronments (E–F) where grouped based on shape and the fraction of cells in each shape were calculated: A 2D spindle, B 2D branched, C 2D bent, 
D 2D spread, E 3D spindle and F 3D round. Calibration bar is 50 μm. G Fraction of cells that were of different shapes (Ncells > 79, Nexperiments > 3). Error 
bars are 95% confidence intervals calculated using Matlab. H Aspect ratio, I migration speed and J directionality in both 2D (black) and 3D (grey) 
environments (Ncells > 79, Nexperiments > 3). Error bars are 95% confidence intervals calculated using Matlab. Statistical significance was tested using a t 
test with p < 0.05 and indicated with bars
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expression or by an exogenous supply of TIMPs [42–44]. 
Therefore, a constant and reliable supply of active TIMPs 
is important for fundamental research and therapeutic 
development targeting unbalanced metalloproteinases.

Recombinant production of active human TIMPs and 
their N-terminal domains, usually employs eukaryotic 
expression systems, chiefly due to disulfide bond forma-
tion and glycosylation [6, 7, 9, 21]. Specifically, TIMP-1 
has two N-linked glycosylation sites at  Asn30 and  Asn78. 
Although aglycosylated TIMP-1 shows uncompromised 
inhibition potency, it has been suggested that N-glyco-
sylation involves in its folding, solubility and transport 
to cell surface [6, 7, 45–47]. The glycosylation status of 
TIMPs has been largely disregarded in clinical samples 
from patients with cancer, but their role in cancer pro-
gression may confound expectations [48]. Glycosylated 
TIMP-1, but not aglycosylated one, exerts influence 
of tumor formation and growth in the early phase [49]. 
Recently, production of N-glycosylated proteins in E. coli 
was achieved by utilizing and engineering the N-linked 
glycosylation system of Campylobacter jejuni [50]. With 
current endeavors to further develop this approach for 
complicated glycosylations [51], our system would ben-
efit from all these advances for production of fully glyco-
sylated TIMP-1/-3 in E. coli.

Numerous studies have been conducted to optimize 
the refolding process, especially to focus on restoring the 
multiple disulfide bridges [8, 21, 22, 24–29]. Nevertheless, 
generating biologically active TIMPs from E. coli inclu-
sion bodies is considerably challenging, because TIMPs 
contain 12 cysteine residues, all of which participate in 
intramolecular disulfide linkages. The aim of present 
study was to develop an expression system without tire-
some refolding process to produce active human TIMPs 
at high yields that are sufficient for biochemical and cel-
lular experiments. In distinct contrast to previous studies, 
we employed periplasmic space of E. coli to achieve the 
purpose. By optimizing periplasmic folding modulators 
in conjunction with expression host and conditions, full 
length TIMPs and their N-terminal domains were solubly 
produced at yields of 0.2–1.4 mg purified proteins per liter 
of culture (Fig. 2). Particularly, periplasmic co-expression 
of a thiol:disulfide interchange protein DsbC dramati-
cally increased the titers of TIMPs, presumably due to 
its disulfide isomerization activity by correcting the non-
native disulfide bonds, as well as to its general chaperone 
activity to prevent TIMPs aggregation. Impressively, puri-
fied N-TIMP-2 showed as a clean single peak associated 
with monomer in gel permeation chromatography, with-
out aggregates or oligomeric species presented (Fig. 3a).

The activities and functionalities of periplasmi-
cally prepared TIMPs were then confirmed by a set of 

experiments: (1) inhibition assays against a panel of 
MMPs, including direct comparison of TIMP-2 and 
N-TIMP-2 inhibition potencies for the first time (Fig. 4; 
Table 1); (2) characterization of MMP specific antibodies 
(Fig. 5); and (3) cell morphology and migration assays in 
2D and 3D extracellular matrix (Fig. 6).

To our best knowledge, it is the first study to validate 
direct production of active human TIMPs in periplasm 
of E. coli. The approach without refolding is straightfor-
ward and reliable with less lot-to-lot variation. And high 
yields and homogeneity of the products indicate that our 
method is suitable for designed or randomized mutagen-
esis studies to investigate the biological roles of TIMPs 
and lead for therapeutic development of engineered 
TIMP variants. Furthermore, the periplasmic prepara-
tion is simple and fast, i.e. the enzymatic and osmotic 
treatment followed by centrifugation can be finished 
in  ~40  min. In this aspect, we expect that the periplas-
mic preparation of TIMPs can greatly facilitate down-
stream processing and make this approach economically 
attractive.

Conclusions
Direct production of high yields of active (N-)TIMPs 
without refolding was achieved in the periplasmic space 
of protease-deficient E. coli strain by co-expressing 
disulfide isomerase (DsbC). Periplasmically produced 
TIMPs exhibited expected inhibition potencies towards a 
panel of MMPs, and functional in competitive ELISA and 
in a cellular context, i.e. regulating cancer cell morphol-
ogy and directed migration in 2D and 3D bioassays.

Methods
Materials
Restriction enzymes and Vent DNA polymerase were 
obtained from NEB. Human MMPs-1/2/7 were pur-
chased from AnaSpec. The catalytic domain of human 
MMP-14 (cdMMP-14) was produced and biotinylated as 
previously described [31]. The following vectors and cell 
lines were from lab stock: periplasmic expression vector 
pMopac16 [52], pBAD33 [53], DsbA/C chaperon plas-
mids [54] pBAD-DsbA, pBAD-DsbC, pBAD-AC1P (both 
DsbA and DsbC under one PBAD promoter) and pBAD-
AC2P (DsbA and DsbC under two separated PBAD pro-
moters), and E. coli strains Jude-I [DH10B F’::Tn10(Tetr)] 
and BL21(DE3). A human mammary basal/claudin low 
carcinoma cell line (MDA-MB- 231, ATCC) was cul-
tured in Dulbecco’s Modified Eagles Medium (DMEM) 
(Sigma-Aldrich) containing 10% fetal bovine serum (FBS) 
(Gibco) and 1% penicillin–streptomycin (pen-strep) 
(Gibco) at 37  °C in 5%  CO2. Imaging media for MDA-
MB-231 cells was the same as the subculturing media, 
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with the exception that no phenol red was included and 
that 12 mM HEPES (Sigma-Aldrich) was included.

Cloning and expression of (N-)TIMPs
The DNA fragments encoding human TIMP-1/2/3/4 
were synthesized (IDT) and cloned into pMopac16, 
which carries a lac promoter and a pelB leader. The 
genes of N-TIMP-1/-2/-3 were PCR amplified (residues 
1–126, 1–127 and 1–121 respectively) and cloned into 
pMopac16. Transformed E. coli Jude-I cells were grown 
in 2×YT media supplemented with 35  µg/mL chloram-
phenicol (2×YT/Chlor) for (N-)TIMPs expression over-
night at 30  °C without IPTG. For co-expression with 
periplasmic folding modulators, the chloramphenicol 
acetyltransferase genes on the chaperone plasmids were 
replaced with β-lactamase genes. Double transformed 
Jude-I or BL21(DE3) containing pBAD-DsbA/-DsbC/-
AC1P/-AC2P and pMopac16-(N-)TIMPs were cultured 
at 30  °C overnight in 2×YT media supplemented with 
100  µg/mL ampicillin, 35  µg/mL chloramphenicol and 
0.2% arabinose (2×YT/Amp/Chlor/arabinose) without 
IPTG.

Periplasmic fractions preparation and recombinant (N-)
TIMPs purification
Periplasmic fractions were prepared as previously 
reported [31]. Briefly, three OD cells were harvested 
and resuspended in 100  μL 200  mM Tris–HCl pH 7.5, 
20% sucrose, 30 U/μL lysozyme, and then incubated 
for 10  min at room temperature. The mixture was then 
treated by osmotic shock with 100  μL ice-cold  ddH2O 
followed by incubation on ice for 10  min. The mixture 
was centrifuged at 15,000×g for 2 min, and the recovered 
supernatant was analyzed by SDS-PAGE and Western 
blotting with anti-6×His-HRP (Abcam) and chemilumi-
nescent substrate (Thermo Scientific). The (N-)TIMPs 
were purified from periplasmic preparations by Ni–NTA 
agarose beads following manufacturer’s protocols (Qia-
gen). The homogeneity of purified proteins was con-
firmed by SDS-PAGE. Overnight dialysis was conducted 
to remove residual imidazole, and the concentrations 
of purified (N-)TIMPs were determined by NanoDrop 
(Thermo), before storage in 20% glycerol at −80 °C.

Gel permeation chromatography
GPC analyses were performed on an ÄKTAprime using 
a superdex 75 10/300 GL size-exclusion column (GE 
Healthcare) equilibrated with 50  mM HEPES pH 7.5, 
150 mM NaCl. 100 µL 500 µg/mL N-TIMP-2 was injected 
at a flow rate of 0.5 mL/min to obtain chromatograms of 
absorbance at 280 nm. The molecular mass of N-TIMP-2 
was estimated based on the retention times of standard 

proteins including ovalbumin (43  kDa) and lysozyme 
(14.3 kDa) (Sigma-Aldrich).

FRET inhibition assay
Concentrations of active MMPs were titrated by 
GM6001 (a highly potent broad-spectrum MMP inhibi-
tor, EMD). In 96-well black assay plates (Corning), 
60/60/250/500  nM MMP-1/-2/-7/-14cd was incubated 
with 0.98–1000 nM (N-)TIMPs for 30 min at room tem-
perature, and 1  μM  M-2350 substrate (Bachem) was 
added to start the reactions. The fluorescent signals with 
excitation at 328 nm and emission at 393 nm were moni-
tored using a Synergy H4 microplate reader (BioTek). 
Initial velocities were calculated to determine  IC50, and 
inhibition constants (KIs) were obtained using the follow-
ing equation for slow tight-binding inhibitors [5]:

[I]t is the total inhibitor concentration, [E]t is the total 
enzyme concentration. v0 is the rate of substrate hydroly-
sis in the absence of TIMP (M · s−1), vs is the equilibrium 
rate of substrate hydrolysis reached after inhibition (rate 
of hydrolysis in the inhibited steady state) (M  ·  s−1) for 
each TIMP concentration, [I]t.

Competitive ELISA
12 μM N-TIMP-2 was two-fold serially diluted and incu-
bated with Fabs of interest (10 nM 3A2, 10 nM 3D9, or 
20  nM 3E9) for 15  min in streptavidin microplate wells 
coated with 5  μg/mL biotinylated cdMMP-14. After 
washing, bound Fabs were detected by anti-Fab-HRP and 
TMB solution, then stopped with 1 M  H2SO4.  OD450 sig-
nals were measured using a microplate reader.

Imaging at 2D environment
For 2D cell imaging, a 15 ×  15  mm piece of muscovite 
mica (highest grade VI, Ted Pella, Redding, CA, USA) 
was freshly cleaved using tape. High concentration non-
pepsin treated rat tail collagen type I (Corning, Corning, 
NY, USA) was diluted to 10 μg/mL in 50 mM Tris–HCl 
pH 9.2 and 200 mM KCl, and incubated on the mica at 
room temperature for 3–6  h [55]. After incubation, the 
mica was washed with distilled water, laid against the 
edge of a tissue culture dish then allowed to dry over-
night. Collagen substrates were seeded with MDA-
MB-231 cells (~6000 cells/cm2), which were treated with 
50 nM N-TIMP-1 or N-TIMP-2. After 2 h of incubation, 
substrates with cells attached to the fibrils were inverted 
onto two strips of double-sided tape attached to a micro-
scope slide to generate a flow chamber. The chamber was 

(1)
[I]t

1−
vs
v0

= KI

vo

vs
+ [E]t
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filled with imaging media, sealed and imaged by phase 
contrast microscopy on a heated stage at 37  °C every 
2 min for 12 h.

Cell imaging in 3D gels
For 3D imaging, the cells were trypsinized and sus-
pended at a concentration of 600,000 cells/mL in a 2 mg/
mL non-pepsin-treated rat collagen type I solution. 
50 nM N-TIMP-1 and N-TIMP-2 were added to this solu-
tion prior to the addition of the collagen. A 125 μL volume 
of the solution was pipetted into a MatTek dish (MatTek 
Corporation, Ashland, MA, USA) and allowed to polymer-
ize at room temperature for 45 min. After polymerization, 
125 μL of imaging media was added to the top of the gel. 
To seal the chamber, a 5-mm thick pad of polydimethyl-
siloxane (PDMS) (Dow) punctured with an acupuncture 
needle was placed on top and sealed with food grade lubri-
cant (McGlaughlin Oil Company, Columbus, OH). The 
acupuncture needle was then rotated one full rotation to 
align the collagen fibers and placed in a 37  °C incubator. 
After 24 h, the chambers were removed from the incubator 
and imaged every 2 min for 8 h. The images were analyzed 
using the MTrackJ plugin in ImageJ which allows the user 
to track the cells on an image-by-image basis. The plugin 
generates the x–y coordinates of the cell at each time point. 
Trajectories were analyzed using a custom Matlab script to 
calculate a migration speed. Directionality was determined 
using another custom Matlab script. The angle between the 
direction of the migration and a radial vector field origi-
nating from the needle was used to calculate directionality 
with the following equation:

Aspect ratio was calculated by measuring the length of 
a cell and dividing it by the width of that same cell. Anal-
ysis of cell morphology was completed by binning cell 
shape based on the shape created by the extensions after 
the cells had time to adhere to its environment: 9 h for 
2D and 24 h for 3D. 95% confidence intervals were cal-
culated using Matlab with a sample of at least 79 cells. A 
two tailed t test at p ≥ 0.05 was conducted to identify sta-
tistical differences between the N-TIMP conditions and 
that of the control.

(2)DI = cos 2θ

Additional file

Additional file 1. Figure S1. Size exclusion chromatography of puri-
fied N-TIMP-1 prepared without DsbC co-expression. The size-exclusion 
column was equilibrated with 50 mM HEPES (pH 7.5) and 150 mM NaCl. 
100 µL of 500 µg/mL N-TIMP-1 was loaded to a superdex™ 75 10/300 GL 
column (10 mm × 300 mm) at a flow rate of 0.5 mL/min. Chromatograms 
were obtained by monitoring absorbance at 280 nm. The molecular mass 
of N-TIMP-1 was estimated by its retention time and comparison with 
these of standard molecular mass markers, e.g. ovalbumin (43 kDa) and 
lysozyme (14.3 kDa).
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